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Executive Summary

This study aims to focus on comparing methods of providing forecasts,
so as to allow for an effective financial strategy to be built around the
predictions. With the benefits - namely profit - that come from being able to
predict the financial markets, lots of research has been put into developing
newer, better ways to produce a forecast for the behaviour of historical
data. A higher accuracy forecast produced by models can allow for better
performance when executing different trading strategies, as higher certainty
about the future can allow for better preparation for the future. The forecasts
can be applied in numerous fields to allow better planning, whether it be:
budgeting and planning, allowing businesses to manage money better;
insurance, performing risk assessment of individuals/activities based on
past participants with similar characteristics; financial forecasting, executing
stock market analysis to indicate when is the best time to buy/sell a stock
for maximum profit.

When examining the goal of this study from a social standpoint, it is im-
portant to note that people/entities should only invest money which they
can afford to lose; this is because unforeseen circumstances can affect the
financial markets, causing a stock to lose all value - and with it the investors
money. The ethics of investing are a complicated topic, as when investing
there is competition against other investors to gain the maximum profit; this
competition can ultimately lead to other entities losing their hard earned
money [1]. The results from this study are to compare the effectiveness of
different predictive models, and they are intended for academic purposes
only, with any use separate from academics to be performed at the users
own risk. Practitioners should carefully evaluate the appropriateness for a
forecasting model to be applied to their own data

There are diverse applications for financial forecasting, ranging from pre-
dicting macroeconomic indicators [2] like GDP to forecasting the financial
market indices for trading purposes. Whilst forecasting economic indicators
aids in the understanding of economic trends and informing policy decisions,
focusing on financial markets - particularly index funds - allows traders to
anticipate market movements and make informed investing decisions. In
the context of this study, the emphasis lies on forecasting market indices to
capture trends within the financial markets.
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Executive Summary

The data this study covers a range of index funds, which include various
markets and different companies. The funds analysed are those typically in
the spotlight for good performance: Dow Jones Industrial Average (DJI),
FTSE 250 (FTMC), S&P 500 (GSPC), NASDAQ (IXIC), and Russell 2000
(RUT). When dealing with these datasets it is important to note the varying
scale at which they operate (some with prices ranging up to £30000, whilst
others remain at around £2000. This data was retrieved from publicly
accessible sources, so as to keep the findings of this study accessible
and reproducible. A range of traditional statistical methods and modern
techniques were employed to produce forecasts for the financial data.
The statistical methods covered were ARIMA (AutoRegressive Moving
Average) and VARMA (Vector AutoRegressive Moving Average), whilst
the modern techniques employed were LSTM (Long Short-Term Memory)
and Random Forest. These models were produced and analysed using
public, open-source libraries. The results found that Random Forest, a
modern technique, performed better than all other models covered in this
study. However, ARIMA and VARMA provided more consistent error rates
than LSTM - as LSTM proved inaccurate when dealing with all the different
indices.

The studys conclusion found that, after performing ANOVA(ANalysis Of
Variance) on the forecasts produced, traditional methods are outperformed
by more modern approaches to financial forecasting. The forecasts gener-
ated by the modern techniques, Random Forest and LSTM, exhibit closer
alignment with the actual data, when compared with those produced by
traditional methods. This disparity can be attributed to advancements in
mathematics and technology, as machines used for modern computing
have significantly more capabilities than older systems. However, when AN-
OVA was performed on the RMSE found that the errors across all models
were not significantly different. Although the models experienced similar er-
ror, the advantage of modern techniques lies in their ability to more closely
trace the market behaviour.
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1 Introduction

Financial Forecasting plays a crucial role in the strategic planning and
decision making processes that take place within organisations across
the globe, in a broad spectrum of sectors. This tool can be utilised to
guide businesses down a path which leads them to more positive financial
performance in the future. In modern society, when dealing with companies
that experience rapid growth and bring on huge technological advancement,
the ability to accurately predict the path financial data will follow has become
treasured in fields such as business and economics.

Recently, financial forecasting has been paired with machine learning tech-
niques due to the potential these models have to increase the accuracy of
models and automate the intricate and complex decision making processes
involved in the financial markets, and the obvious gains which can be ac-
quired through having a predictive model that performs even marginally
better than the markets. Modern machine learning methods can offer a
data-driven approach to the analysis of the markets, with more adaptab-
ility and accuracy than traditional, statistics based methods - which may
struggle to capture intricate relationships and non-linear patterns.

This study aims to compare traditional and modern methods of financial fore-
casting, aiming to explore their effectiveness and evaluate their strengths
and weaknesses against each other, whilst assessing the performance
of each model by measuring their accuracy. Through making use of vast
amounts of historical data, machine learning algorithms can identify more
complex patterns than the less resource heavy statistics and traditional
methods. When forecasting indices in industry the aim is to make money,
however this study does not focus on financial gain - which requires a
combination of trading strategies and forecasting, and is therefore out of
the scope of this study; instead of focusing on financial gain, the focus of
this study is forecasting market indices.

Throughout this report the effectiveness of multiple techniques will be eval-
uated and compared with other state of the art techniques. The techniques
being employed will be:

• AutoRegressive Integrated Moving Average (ARIMA)

• Vector AutoRegressive Moving Average (VARMA)
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1 Introduction

• Long Short-Term Memory (LSTM)

• Random Forest

These methods will be applied to forecast the path index funds value will
take, using past historical data to gain forecast patterns and dependencies
within the data.

This study will research the challenges associated with financial forecast-
ing, in general and specific to each method, including data quality, and
overfitting. What also makes forecasting the financial markets difficult is
the large scale in real-time causing unpredictability, along with the many
participants leading to the "observer effect", where the actions and beliefs
of the market participants influence market outcomes .Even with the pres-
ence of these challenges, the benefits of financial forecasting are clear;
it allows for improved risk management, better future planning, and more
stable money management.

To conclude, the potential for the integration of machine learning tech-
niques holds lots of promise to drastically revolutionise existing financial
forecasting practices. Using machine learning to gain data-driven insights
and recognise advanced patterns that human analysts may not identify,
organisations stand to gain a lot from the new technology being researched,
and can also reduce the risks they take with the increased knowledge they
are granted.
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2 Literature Review

2.1 Financial Time Series Forecasting

Time Series Forecasting predicts future values based on the past historical
data, commonly used to analyse stock prices, sales figures, population
or even astronomy and weather data. In stock price forecasting, two
main approaches are employed: Fundamental analysis and technical ana-
lysis [3]. Fundamental analysis focuses on company financial information
and industry trends, while technical analysis assumes market behaviour is
influenced by previous market behaviour and repeats itself.

The application of time series forecasting offers significant business bene-
fits [4] driving extensive research to enhance forecasting models, especially
in financial institutions like banks - where obvious gain is to be made by
having an accurate forecasting method. Models range from statistical
methods like ARIMA (AutoRegressive Integrated Moving Average) and
VARMA (Vector AutoRegressive Moving Average) to advanced techniques
such as LSTM (Long Short-Term Memory) and Random Forest, utilising
advancements in artificial intelligence and machine learning.

Understanding Time Series Time Series is a sequential arrangement
of data points, typically representing measurements of a variable over
time, such as: daily stock price, hourly temperature, or monthly population.
Analysis of these data points reveals trends and seasonal patterns, aiding
decision making processes. Time series data often exhibits regular patterns,
such as daily, weekly, monthly, or annual cycles, aswell as irregular noise -
which must be filtered out to ensure accurate forecasts [5].

2.2 Financial Forecasting

Origins of Financial Forecasting Financial Forecasting involves utilising
historical data, statistical analysis techniques, and expert judgement to
predict the future financial performance of a company [6]. The process
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2 Literature Review

focuses on key financial indicators, such as past financial statements, sales
data, and current/previous market trends.

The importance of financial forecasting is upheld by its ability to enable
companies to make informed decisions regarding their business practices.
It aids in an organisation’s budget creation, goals setting, and optimising
operations for economically efficiency [7]. Moreover, the modelling can
help companies anticipate large economic changes, market shifts, and
industry trends, facilitating early adjustments [8].

Financial forecasting methods have evolved significantly since their emer-
gence in the 1920s [9], facing challenges with accuracy ever since [10].
While qualitative approaches relied on intuition, the modernisation with
quantitative approaches offers data-driven, unbiased predictions.

Types of Financial Forecasting Traditionally financial forecasting nor-
mally employs two different techniques, qualitative and/or quantitative [11].
Qualitative techniques have the ability to provide insight beyond numerical
data and can be very useful when historical data is scarce, although it is
subjective which can be difficult to deal with when wanting an objective
answer. Quantitative techniques are strictly objective, allowing for precise
numerical predictions based on historical data; however, the drawback
of quantitative techniques being strictly data-driven is they assume that
historical patterns will always continue, whilst real world scenarios have
proven this is not the case.

Qualitative Techniques Qualitative techniques, such as interviews, fo-
cus groups, and making observations [12], alongside extensive market
research, provide insight to forecasted concepts; The Delphi method, for
example, involves multiple rounds of surveying a collection of experts on
a particular topic for forecasting. Open-ended interview questions yield
descriptive insights into consumer behaviour and industry trends, through
conversation. These insights, alongside quantitative analysis, give con-
textual understanding to guide decision making. Literature reviews also
contribute to exploring existing ideas and theories [13].However, qualitative
techniques are susceptible to underlying bias, such as the Hawthorne Ef-
fect [14], due to influence from the researcher and the participants altered
behaviour.

Quantitative Techniques Quantitative forecasting relies on historical
data and statistics [15]. Multiple-choice surveys, experiments, and record-
ing observations yield time series data for analysis, enabling predictions of
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2 Literature Review

future trends, establishing hidden facts. Time series methods, such as mov-
ing average, are key in financial modeling when identifying trends. linear
regression is a basic quantitative approach to show a relationship between
variables. However, quantitative techniques can experience challenges
with bias in the data [16]. Errors in data collection can distort forecasts,
and overlooking important variables can impact model accuracy. Random
sampling is crucial to collect reflect varying experiences and views.

Challenges Within Financial Forecasting Financial forecasting faces
the obstacle of unpredictable future events [17], such as the 2007 Subprime
Mortgage Crisis, which led to a global financial downturn [18], highlighting
the need for frequent forecast revisions to maintain accuracy amidst real-
world fluctuations. External factors can cause deviations from predictions,
as models rely on available information. Moreover, forecasting accuracy
diminishes with increasing distance from the last observed data point.

2.3 Traditional Approaches to Financial
Forecasting

Stationarity Many models rely on the assumption that the data being ana-
lysed is stationary, where the statistical properties of data remain consistent
over time, i.e. the mean of the data doesn’t change. It is an important
property to be considered when passing time series data into various fore-
casting models, like ARIMA [19], as the model assumes that the patterns
displayed in the data will continue into the future. If the data is not sta-
tionary it becomes more challenging for the model to provide accurate
predictions. To get stationary data from non-stationary data the most com-
mon approach is to apply differencing to it [20]. First-order differencing
subtracts consecutive values, performed by the following equation:

X′
t = Xt − Xt−1 (2.1)

Higher order differencing can be applied if First-order differencing does
not make the data stationary, applied iteratively until eventually the series
produced is stationary [20].

ARIMA (AutoRegressive Integrated Moving Average) ARIMA (AutoRe-
gressive Integrated Moving Average) is a statistical model for analysing
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2 Literature Review

and predicting time series data [21]. ARIMA combines three key compon-
ents: AutoRegressive (AR), Integration (I), Moving Average (MA). The AR
component predicts future values based on past values, implying that data
behaviour will remain consistent. Integration transforms non-stationary
data to stationary data, ensuring its statistical properties remain constant
over time. The MA component smooths the data, using a lagged Moving
Average to reduce short-term irregularities. ARIMA is commonly used in
technical analysis to forecast the price of a given security.

The AutoRegressive portion of ARIMA is defined by the equation [22]:

Xt = c + ϕ1Xt−1 + ϕ2Xt−2 + . . . + ϕpXt−p + εt (2.2)

where the error term et is assumed a white noise process, Xt is the value
of the series at time t, Xt−1 is the first lagged value of the series, ϕ1 is the
coefficient of lag1, and c is a constant term.

The Moving Average portion of ARIMA can be outlined by the following
formula, with a Moving Average of order (q) [20]:

Xt = µ + εt + θ1εt−1 + θ2εt−2 + . . . + θqεt−q (2.3)

where Xt represents the value of the time series at the time of measure-
ment, t. µ is a constant term, and εt is the stochastic term at time t, at the
time. The Moving Average coefficients represented by θ.

These two equations, along with the addition of differencing, can then be
collated to form the equation for ARIMA [23]:

Xt = c+ϕ1Xt−1 +ϕ2Xt−2 + . . .+ϕpXt−p + θ1εt−1 + θ2εt−2 + . . .+ θqεt−q + εt
(2.4)

Variations of ARIMA ARIMA models can be fine tuned by parameters
(p,d,q), to adjust the model for specific characteristics [24] p refers to the
number of AutoRegressive terms in the model, which are used to capture
the relationship between the current value and its lags. d represents the
degree of differencing which has to be applied to make the data stationary,
to ensure it remains consistent throughout. q is used for the number
of moving average terms, are used to improve predictions being made.
Different combinations of ARIMA parameters resemble existing models,
ARIMA(0,0,0) is a white noise model (a random signal with equal intensity
at different frequencies) [25]. ARIMA(0,1,1) without a constant is equivalent
to a simple exponential smoothing model (a model which assumes the data
has no trend).
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2 Literature Review

VARMA (Vector AutoRegressive Moving Average) VARMA (Vector
AutoRegressive Moving Average) is a tatistical multivariate model that is
used for time series forecasting and understanding correlations between
multiple variables [26]. Combining Vector AutoRegressive (VAR) and
Moving Average (MA), VARMA considers interactions between multiple
variables over time.

In VAR, each variable is regressed with its lagged values, as well as the
lagged values of all the other variables in the system. This allows VAR
to capture the interactions between the variables over time [26]. The
AutoRegressive portion draws the implication that future behaviour of a
variable is influenced by its past patterns and also the past values of other
variables, which differs from how ARIMA behaves.

The Moving Average (MA) component models the stochastic distribution,
smoothing short-term irregularities in the data (those that cannot be cap-
tured by the AutoRegressive component), making it easier for the VARMA
model to capture underlying trends and patterns.

The equations for VARMA can be represented as follows:

Vector AutoRegressive (VAR) [27]:

Yt = α + ϕ1Yt−1 + ϕ2Yt−2 + . . . + ϕpYt−p + εt (2.5)

Moving Average (MA) [20]:

Yt = µ + εt + θ1εt−1 + θ2εt−2 + . . . + θqεt−q (2.6)

Vector AutoRegressive Moving Average (VARMA):

Yt = α+ϕ1Yt−1 +ϕ2Yt−2 + . . .+ϕpYt−p + θ1εt−1 + θ2εt−2 + . . .+ θqεt−q + εt
(2.7)

Where Yt is a vector of variables at time t, α is an intercept constant, ϕ is a
matrix of AR coefficients, θ is a matrix of MA coefficients and εt represents
white noise.

VARMA is utilised in various fields, particularly finance and economics [28],
due to its ability to consider multiple variables. Its multivariate capabilities
facilitate forecasting by considering the relationship between data, like
stocks prices connection to gold prices [2]. However, this complexity can
reduce the models interpretability, requiring an understanding of variable
relationships. Large parameter spaces in VARMA models increase the
risk of overfitting and prediction uncertainty, while increasing computational
complexity, by necessitating resource intensive likelihood estimation and
optimisation techniques.
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Historical Applications ARIMA and VARMA, as widely used traditional
time series forecasting models, have found widespread use across a range
of fields, including business, pollution modelling, environmental monitoring,
financial time series analysis, and healthcare, for disease outbreaks and the
demand put on hospitals [29]. While ARIMA handles time related forecasts,
VARMA is applied to model the interdependencies among multiple variables.
Both models have significantly contributed to improving decision making
and societal outcomes, by providing insights from historical data.

2.4 Modern Approaches to Financial
Forecasting

Deep Learning Deep learning interest has surged in both research and
practical applications since 2010, driven by recent advancements in com-
putational power and also the increased availability of large datasets [30].
This rise has impacted fields such as computer vision(e.g., image classi-
fication), speech recognition, natural language processing (e.g.,language
translation), and robotics (for example, autonomous vehicles). Within Re-
current Neural Networks (RNNs), Long Short-Term Memory (LSTM) and
Gated Recurrent Units (GRUs) have been two main practical usages of
RNNs [31]; LSTM introduced a more powerful and flexible method of mod-
elling sequential data with the use of specialised gates, compared to simple
RNNs [32].

LSTM (Long Short-Term Memory) LSTM (Long Short-Term Memory) is
a type of Recurrent Neural Network (RNN) that is designed to mitigate the
“vanishing gradient problem” by enabling the model to maintain information
from earlier in the input sequence for extended periods [33]. Unlike con-
ventional RNNs, LSTM is proficient at identifying long-term dependencies,
making it well suited for time series forecasting [34].

LSTM’s superiority stems from its composition of memory cells, which are
used to hold and process information. Each memory cell is composed of
three main components called gates, in particular:Input gate, Forget gate
and Output gate [34]. A diagram of an LSTM memory cell is shown in
Figure 2.1 [35]:

The forget gate discards irrelevant information from the previous state [34],
a crucial difference between LSTM and simple RNNs. The equation for the
forget gate is defined below [36]:

ft = σ(W f · [ht−1, xt] + b f ) (2.8)
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Figure 2.1: LSTM Memory Cell [35]

The Input Gate regulates the flow of relevant information into the memory
cell [34], using a sigmoid function. The equation for the input gate is defined
below [36]:

it = σ(Wi · [ht−1, xt] + bi) (2.9)

After the forget gate has selected relevant information, and the input gate
has selected the new information to be input, the cell is updated to contain
remembered and new information. The equations contributing to cell state
are shown below [36]:

C′
t = tanh(Wc · [ht−1, xt] + bc) (2.10)

Ct =t ∗Ct−1 + it ∗ C′
t (2.11)

Then the output gate is activated [34], this controls the final output of the
LSTM memory cell at each timestep. The relevant equations are defined
below [36].

ot = σ(Wo · [ht−1, xt] + bo) (2.12)

ht = ot ∗ tanh(Ct) (2.13)

Ensemble Learning Ensemble Learning combines multiple models to
improve predictive performance, beyond the capability of one sole model.
The underlying principle of ensemble learning is that aggregating the pre-
dictions of various models leads to a more accurate, robust, and general
prediction [37]. Diversity among the models is sought after, to mitigate
errors, with ensemble methods reducing bias and variance in the overall
prediction. One common ensemble technique, Bagging (Bootstrap Aggreg-
ating) [38], involves training multiple base models on random subsets of the
training data and then averaging their predictions to obtain the final output.

9
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Random Forest Random Forest (RF) is a machine learning algorithm,
that employs ensemble learning principles, for classification and regression
across multiple domains, including financial forecasting [39]. In regression
tasks, it operates by creating multitudes of decision trees during training
and outputting their mean prediction. The “Random” component involves
training each individual tree on random subsets of data and features, this
introducing diversity and reducing the risk of overfitting [40]. The “Forest”
component refers to its ensemble of decision trees, which enhances pre-
dictive performance.

To prepare data for RF training, relevant features, particularly lagged data
for time series forecasting, are incorporated. During training, RF randomly
samples data subsets with replacement and selects random features for
each tree split. Trees are grown recursively to minimise errors until a
stopping criteria is met, such as a maximum tree depth or a minimum node
size. Predictions are then calculated by averaging the predictions of all
trees. A diagram of how a random forest operates is included in Figure
2.2 [41]:

Figure 2.2: Random Forest Diagram [41]

Random Forest’s combination of decision trees mitigates overfitting, and
increases the prediction accuracy. Through Bootstrap Aggregation [38],
RF produces higher quality forecasts, especially effective for, large, high
dimensionality datasets. Despite its high accuracy, Random Forest lacks
interpretability when compared against simpler models, like ARIMA or a
standard linear regression [42], posing challenges when trying to under-
stand its inner workings and influential factors.
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2.5 Model Comparative Analysis

Comparison ARIMA, VARMA, LSTM and Random Forest models provide
clear uses in Financial Time Series Forecasting [43].

LSTM neural networks outperform ARIMA models when dealing with com-
plex sequential data with long-term dependencies, but require higher com-
putational cost. Memory cells allow LSTM to adapt effectively to the unpre-
dictable nature that financial markets often exhibit, whilst also maintaining
a recollection of past patterns in the financial data.

ARIMA relies on traditional time series analysis techniques to capture the
linear dependencies in datasets and it is a more computationally efficient
method. However, a key drawback of ARIMA is its lack of ability to deal
with non-linear patterns, this is an issue in forecasting stocks as they can
exhibit volatile properties and often do not follow exactly linear trends.

ARIMA assumes linearity and that stationary data will be used, while LSTM
excels at handling complex, nonlinear patterns. ARIMA outperformed LSTM
in short-term predictions for NASDAQ data [44], but conflicting reports exist
regarding their comparative performance [45]. LSTM’s adaptability makes it
better suited for forecasting in dynamic environments with frequent updates
and real-world events, as it can include external features - such as news
sentiment.

VARMA, like LSTM, excels in handling multivariate time series data, by
capturing interdependencies between variables, making it flexible enough
to model linear and non-linear relationships. However, VARMA requires
similar data preprocessing like ARIMA - as it assumes stationary data.

Random Forest reduces overfitting and enhances the models robustness by
combining the output of multiple decision trees. By averaging the forecasts
from trees in the forest, Random Forest is, like VARMA, able to capture
non-linear relationships within the data. However Random Forest is more
difficult to interpret than ARIMA and LSTM, it can often operate as a “Black
Box” [46] - where a system is only viewed as inputs and outputs without
understanding of the internal workings.

Overall, whilst Random Forest and VARMA can offer superior predictive
capabilities in certain situations, the lack of interpretability could hinder
their utility in a practical sense - especially when understanding the models
behaviour is key. At the cost of computational efficiency, the newer and
more modern models, Random Forest and LSTM, perform well at handling
lots of complex data with long-term dependencies.

When comparing models, ANOVA (ANalysis Of Variance) can be employed
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to assess the differences between multiple groups of data [47]. This can
be useful as it allows for insight into which models significantly outperform
others, allowing for informed decision making when selecting the most
suitable models. Tukey’s Tests can complement ANOVA by providing spe-
cific insights into where the differences [48], between model performance,
identified lie; this post hoc test allows researchers to perform pairwise
comparisons between all models to identify which individual pairs are
significantly different.

Suitable error metrics to compare LSTM, ARIMA, Random Forest, and
VARMA include MAPE (Mean Average Percentage Error) calculation and
MSE (Mean Squared Error) [44]. While ARIMA and VARMA struggle with
noisy data, LSTMs sensitivity to the selection of hyperparameters chosen
poses a challenge; in light of this, Random Forests robustness to noise
could make it a preferential choice for handling noisy financial data.

Real World implications In economic research, ARIMA is favoured for
forecasting economic indicators, such as GDP and Inflation growth [49],
due to its ability to capture linear trends; while, LSTM is applied to predict
stock prices and apply credit risk assessment, due to its ability to deal with
non-linear data which has long term dependencies; however, the modern
RNN approach can extend to fields beyond time series data, like speech
recognition and natural language processing.

While ARIMAs struggles with sudden market shifts due to its requirement
for stationarity, LSTMs emergence has the potential to reshape economic
theories, especially in identifying outliers and regime shifts [50], as it can be
found to deviate from efficient/traditional market. ARIMA would instead be
applied to measure more predictable movements, such as gradual declines
in a businesses revenue or their production output.

VARMA performs well when handling multivariate time series data, and
assists in analysing complex interactions among economic variables and
to forecast macroeconomic indicators - helping policymakers to stabilise
the economy [26].

Random Forest models find application in a wide range of fields including
portfolio optimisation, credit scoring, and fraud detection, providing valuable
feature importance scores for informed, data-driven decision making.

Hybrid models combining ARIMA, LSTM, VARMA, and Random Forest
are being explored, aiming for more effective models by leveraging the
strengths of each component [51]. These models are useful in finance,
combining LSTMs adaptability and ARIMAs stability [52], resulting in more
accurate forecasts.
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3 Problem Analysis

3.1 Objectives

The goal whilst completing this paper is to compare numerous models
capability at forecasting time series data on various index funds. There
are multiple methods which have the ability to predict historical data, but
for this study those that have been investigated in the prior section will be
used. The following objectives can be set:

1. Produce ARIMA, VARMA, LSTM, and Random Forest models to
forecast the market close price of selected index funds.

2. Evaluate the accuracy of each model and compare them.

The following sections of this report will describe the measures which were
taken in order to fulfill the specified objectives.

3.2 Model Requirements

ARIMA (AutoRegressive Integrated Moving Average) The ARIMA
model should be able to forecast the price that each Index will arrive
at after a given period of time, based on the amount of data available to it

1. Stationarity - The model should ensure time series data is stationary
by applying first-order differencing to it [19], checking that the statist-
ical properties of the data do not change over time, meaning that the
average, variance, and autocovariance of the series stay constant.

2. Order selection - Determining the order (p,d,q) of the ARIMA model
is often based on ACF and PACF plots, or by doing a “grid search”
[53] - evaluating the accuracy of each combination of orders for the
model. For the orders: p represents the count of AutoRegressive
terms, d represents the differencing required to achieve stationarity,
and q represents the number of Moving Average terms.

13



3 Problem Analysis

VARMA (Vector AutoRegressive Moving Average) The VARMA model
should be able to forecast the price that each Index will arrive at after a
given period of time, using the collection of all index historical data and a
base economic indicator (such as gold).

1. Stationarity - The model should process the historical data by applying
differencing to ensure stationarity. This step ensures the statistical
characteristics remain constant over time, including the mean and
variance of the series [19].

2. Order selection - The model should be able to use a determined order
(p,q) for its AutoRegressive and Moving Average portions. These
values can be selected using AIC (Akaike Information Criterion) or
BIC (Bayesian Information Criterion).

LSTM (Long Short-Term Memory) The LSTM model created should be
able to forecast the path that the Close Price of the Index will take, after
considering the past historical data.

1. Data Preprocessing - Cleaning the data by handling outliers and
missing values. Then make sure all features have similar ranges,
this helps the model converge to an optimal solution sooner during
training.

2. Model Architecture Designing - Design the model architecture by
determining the number of layers, units per layer, activation functions,
and selecting a loss function and optimiser, along with any additional
functions which would be tracked during training the model [54].

Random Forest The Random Forest generated should be able to ag-
gregate to form an accurate prediction of the behaviour of each individual
time series data.

1. Data Preprocessing - Clean the data to deal with missing values
within the time series data.

2. Lagged Data - It should be ensured that the data possesses lagged
features for the model to analyse, as the Random Forest uses feature
importance to aid in its forecasts.

3. Terminating Criteria - A parameter and value should be decided on
for the tree to terminate, such as maximum tree depth or a minimum
node size.

14



3 Problem Analysis

3.3 Evaluation Requirements

Error Metrics The following error metrics are used to represent the dif-
ference between the actual values in a dataset and the predicted values
produced by the models. These are useful for understanding how well the
model is performing.

• MAE - Measures the average absolute difference between predicted
and actual values, providing an indication of average error regardless
of the direction.

MAE =
1
n

n

∑
i=1

|Yi − Ŷi| (3.1)

• MSE - Calculates the average squared error between predicted and
actual values, but particularly penalising larger errors - due to squar-
ing. This causes MSE to be significantly more susceptible to outliers
than MAE.

MSE =
1
n

n

∑
i=1

(Yi − Ŷi)
2 (3.2)

• RMSE - The square root of the MSE, offering a widely used, easily
interpretable measure of error. It is, like MSE, sensitive to large
outliers/errors.

RMSE =

√
1
n

n

∑
i=1

(Yi − Ŷi)2 (3.3)

• MAPE - The average percentage difference between predicted and
actual values, its main limitation is it is sensitive to zeros in the actual
values.

MAPE =
100
n

n

∑
i=1

| f racYi − ŶiYi| (3.4)

Statistical Testing When evaluating models, statistical analysis is useful
to ascertain whether the different models yield distinct forecasting outcomes.
This study compares the performance of different forecasting models using
one-way ANOVA (ANalysis Of VAriance). ANOVA is particularly adept at
capturing substantial deviations between the performance of groups; its
null hypothesis states that there are no significant differences between
groups, and an alternate hypothesis says there is a notable difference. In
this study, ANOVA will be used with the aim of discerning any significant
disparities between the produced forecasts. Additionally, Tukey’s Tests will
be employed as a post hoc test to determine which pairs of models show
significant differences in performance.
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4 Design & Implementation

4.1 Data Profiling

The forecasted data originates from various Index Funds, using the “Close”
price - the final price that a stock/index traded at during the day. The
Python library yFinance [55] was used for data collecion, capturing data
between 03/01/2017 to 31/12/2019 from Yahoo! Finance [56]. This period
was chosen due to market stability and upwards trends, due to low interest
and the technology sector performing well and adding to overall market
sentiment; the selected years also came prior to COVID-19 (which threw
the markets into an unpredictable turmoil, as many were unaware of what
was occurring) [57]. The library provides data for each day, which includes
the variables: “Adj Close”, “Close”, “Open”, and “Volume. The “Adj Close”,
or “Adjusted Close”, accounts for corporate decisions made within the
company to reflect the stocks true value; “Close” represents the days final
price of a stock/index; “Open” is understood as the first price that the
index trades at for the day, after the financial markets open, while “Volume”
describes the total number of trades that are made for each selected
financial asset throughout the day. Market closing price was selected as
it is able to reflect the market sentiment - all relevant information for the
whole day’s activity - in one value, and also it is less likely to be affected by
fluctuations throughout the day [58]. The index funds selected were: Dow
Jones Industrial Average, NASDAQ, S&P 500, FTSE 250, Russell 2000,
each exhibiting different behaviours due to the diverse range of markets.
Most are US focused and listed on the New York Stock Exchange (Dow
Jones Industrial Average, NASDAQ, Russel 2000 and S&P 500), whilst the
FTSE 250 represents mid-cap companies on the London Stock Exchange.
These indices provide a range of publicly traded companies, as Dow Jones
Industrial Average, NASDAQ, and S&P 500 focus on large capitalization
companies, and FTSE 250 represents mid-cap companies, whilst Russell
2000 represents numerous small-cap stocks. Figure 4.1 and Figure A.1
represent information describing the collected close data for the period
03/01/2017 to 31/12/2019.

Then after collecting the data, and storing it as a Pandas DataFrame [59],
it is then split into training and test data, which is produced by a 70:30 split.
The test data subset was therefore omitted from the training and then used

16



4 Design & Implementation

Figure 4.1: Information about collected data, after filtering for Close Data

to assess each model’s accuracy on the data, in order to assess how close
the predictions are to the real market events. Figure 4.2 shows plots of the
close market prices, after being split into Training and Test Data.

Figure 4.2: Plots of training and testing market close data
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4.2 Stationary Data

For ARIMA and VARMA models to function optimally, data must be station-
ary. A stationary time series is one whose properties do not depend on
the time at which the series is observed [20]; to ensure differencing the
series can achieve stationarity Augmented Dickey-Fuller (ADF) tests may
be used. ADF testing can reveal whether a unit root is present in the data,
which would suggest non-stationarity (that the data’s mean and variance
changes with time). The null hypothesis of ADF tests is the time series has
a unit root, and therefore is not stationary; the alternate hypothesis is that
the data does not have a unit root and is stationary; a more negative ADF
Test Statistic favours the alternate hypothesis. After generating the ADF
Test Statistic, using the adfuller [60] function from the statsmodels library, it
can be compared to critical values from the Dickey-Fuller Distribution, in
this study’s case the critical values at the significance level of 10%, 5% and
1% were chosen to observe[61]. If the ADF Statistic is found to be less
than the selected critical value then the null hypothesis can be rejected, in
favour of the view that the data is stationary. The p-value produced can be
used to compare to the significance levels, again if the p-value is less than
the chosen significance level then the null hypothesis can be rejected and
the conclusion made that the data is stationary.

Table 4.1: ADF Test Statistics
Index ID ADF Statistics p-values Critical Values

1% 5% 10%
ˆDJI 1.396 0.584 -3.439 -2.865 -2.569

ˆFTMC -1.813 0.374 -3.439 -2.865 -2.569
ˆGSPC -1.033 0.741 -3.439 -2.865 -2.569
ˆIXIC 1.115 0.709 -3.439 -2.865 -2.569
ˆRUT 2.039 0.270 -3.439 -2.865 -2.569

4.3 ARIMA (AutoRegressive Integrated Moving
Average)

Model Training In order to train the model, after testing for stationary
data and then differencing it, a range of values for the models order (p,d,q)
is grid searched [53]. For this study the ranges chosen were: for p the
range of 0 to 3 was chosen; for d the range of 0 to 2 was chosen, and for
q the range from 0 to 3 was selected. Following this each of the chosen
indices are then iterated through, extracting the training and test data for
them from the train/test datasets. A nested loop is then utilised to loop
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over all possible combinations of (p,d,q) - within the chosen ranges. In the
nested loop a model is created using the statsmodels library’s ARIMA [62]
and give it the current combination of order parameters, then fit this model
to the training data. Next, Akaike Information Criterion (AIC) is performed to
give an estimation of the prediction’s error and an indication of the suitability
of the current order. If the produced AIC value is lower, and therefore better,
than the current recorded AIC score then the bestOrder values are updated
to hold the new values. After the nested loop has run its course, bestOrder
is then used for the current data to generate a forecast of how the ARIMA
model expects the test data to behave. The forecast ranges between the
start of the test data, and end of training data, to the end of the test data.

4.4 VARMA (Vector AutoRegressive Moving
Average)

Data Manipulation For VARMA models to perform optimally they require
stationary input data, so before training the model the data is tested by per-
forming Augmented Dickey-Fuller (ADF) tests. Preprocessing techniques
can then be applied based on the results of these tests, such as First-Order
differencing.

Additionally, gold price data was incorporated into the dataset - to serve
as an economic indicator; gold prices can be an indicator of economic
health and inflation [2]. Gold is included in the forecast as it is a leading
indicator for economic health; when gold prices rise it can signal potential
economic trouble ahead, and the opposite is also true: that falling gold
prices can indicate economic growth. It can also help the model understand
how changes in inflation/interest rates will affect both gold and stock prices.

Model Training With the use of the statsmodels library, an instance of the
VARMAX [63] model is created with the training data, the combination of
the original index data and gold prices. The model is then fit to the training
data, through which the VARMAX model estimates suitable parameters
for the provided training data. After fitting the model, forecasts are then
generated for future time steps equal to the length of the testing data -
which is currently unseen data, so that the model was not training on data
it already has knowledge of. The default orders (p,q) are used for the
VARMAX model, with both p and q being set to 1; these parameters are
used to determine the AutoRegressive and Moving Average orders.
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4.5 LSTM (Long Short-Term Memory)

Data Transformation To train the LSTM model effectively, data quality
is paramount. Missing values are removed from the data, to ensure data
consistency and facilitating proper pattern learning. Then the data is
scaled, preventing issues like “the exploding gradient problem”. Using
MinMaxScaler [64], from sklearn, the data is normalised, within the range -1
to 1, to avoid the risk of certain data features dominating the models training.
A 70:30 train-test split is then performed to provide ample training data for
the model whilst still maintaining enough to sufficiently test the model. This
split avoids having a testing set which is too small to be confident that the
model’s evaluation is accurate, while minimising overfitting when compared
to other splits, and also enhances training times.

Sequential data is key for the LSTM models function, as past values and
market trends influence future behaviour of the financial markets. Se-
quences must be labeled to discern the series of values, whether for use in
training or testing, the “createSequencing” function uses the next data point
as the label, then outputs the original Close Prices data and the assigned
labels for the data.

Then each dataset undergoes missing value handling, substituting the
missing data for the median value of the respective column to preserve the
data distribution. Using a mean value could risk distorting the data if there
are significant outliers (which can be the case with unpredictable stocks),
while the median is more stable and less easily influenced by changes in
the data. PyTorch Data Loaders are then used to transform the training
and test data into iterable objects, which can be processed by the model
for use in mini-batch training [65]. The training data batches are shuffled to
ensure the model can witness a diverse range of example values in each
epoch of its training, preventing the model from memorising the sequence
order, encouraging it to learn patterns in the data. Although the train data is
shuffled, the test data isn’t shuffled to ensure the evaluation of the models
performance on the testing set is consistent across numerous runs.

Hyperparameters Hyperparameters are pivotal in defining the architec-
ture of LSTM models and influencing the way they are trained. They
influence key aspects of the model, such as: input and output sizes, hid-
den layers, sequence length, epochs, batch size, learning rate, optimiser
choices, and the criterion used [54]. Each hyperparameter influences the
models ability to capture patterns in the data and the computational ef-
ficiency of the model. The number of columns the input data had was
used to determine the input and output size, along with a hidden size of
64 - to capture complex patterns within the data while remaining efficient.
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Two layers were used in this LSTM model, to maintain a balance between
performance and complexity. The LSTM model utilises a sequence length
of 10, considering the past 10 time steps to forecast the next, allowing the
model to capture a balance of short and long term dependencies. The
LSTM model trains for 100 epochs, with a batch size of 64 for each epoch.
The ADAM (ADAptive Moment estimation) optimiser is used to minimise
the loss of the model, with a learning rate defined at 0.001, and the model
uses MSE (Mean Squared Error) when aiming to minimise errors 3.3. For
further description regarding hyperparameters see Appendix A.2.

Model Design The model is initialised using the previously described
hyperparameters to define the architecture of the LSTM model. The Input
Size, Hidden Size, and Num Layers are used to specify how the model
processes the input data within the PyTorch LSTM model [54]. Then a
linear layer translates the hidden layer neurons to output layer neurons.
When defining the models forward pass method a PyTorch tensor is input,
this tensor contains the input sequences. The initial states are defined with
zeros for the hidden state, which represents all information from the input
step to the current time step, and the cell state, which is used to transport
information across time steps. After initialising the hidden and cell states
the LSTM layer is then applied to these, which is then used to output the
final hidden state; then a linear layer translates the LSTM layer to be output.

Model Training In order to train the model, first an empty list is initialised
to store the training loss values for each epoch, which is used to track the
models progress through epochs. For each epoch a running_loss variable
is initialised, which tracks the model’s loss for the current epoch. After
doing this an inner loop is used to iterate over mini-batches of data from
the earlier defined train_loader. Then the recorded optimiser gradients are
cleared, ensuring that only the gradients for the current batch are being
considered whilst updating the model parameters. Then the model is fed
the input data so it produces the predicted output values. The loss between
the predictions and the ground truth is then calculated - using the MSE
criterion, described in Evaluation Requirements 3.3. An optimisation step
is made to update the model’s parameters, based on computed gradients
from a backward pass.

4.6 Random Forest

Data Feature Creation The data used for the Random Forest model
would be the same historical data used for all preceding models surrounding
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the index funds, consisting of the Close Price and the Date associated with
this price. After cleaning the data of all non-values, it must be ensured that
the data has lagged features. Lagged features can be created by looping
through each of the indices and creating additional columns in the Pandas
DataFrame containing the historical data, these additional columns can be
assigned to each lag, i.e. if there were three lags then there would be three
more columns than there originally were for one index fund. The values in
each of these columns are the lagged values for the original index, shifted
up by the lag count. The inclusion of lagged features allows the model
to learn from historical patterns and relationships between the past and
present index funds

Model Design The Random Forest model that will be being used for this
study is imported from the library sklearn, as RandomForestRegressor [66].
This model was chosen as it is specifically designed for performing re-
gression tasks, rather than including the alternative for Random Forest
(classification). The model is provided with the hyperparameters for the
number of estimators and a random state. A Random State is used as it
allows for reproducible, consistent results from the model, which prevents
the models performance from varying when evaluating and measuring the
results after multiple runs; it also allows for this study to be re-run and
produce the expected results. A Random State of 1 was provided to the
model in this instance. The number of estimators hyperparameter dictates
the number of decision trees used in the Random Forest, with a higher
number of estimators generally improving the performance of the model
(up to a point). With less estimators being used a Random Forest would
prove to be less computationally expensive and hence able to train faster,
although a Random Forest with more decision trees would be expected to
perform better at generalising to analyse unseen data, and also be more
robust. After trial and error with different amounts of estimators, a count
of 100 estimators was decided on. This value was selected as additional
estimators did not significantly improve the predictive power and accuracy
of the model, when measuring using MAPE.

Model Training After ensuring the data has the correct features, the
historical data is split into training and test sets in a 70:30 split. After
splitting the data, it is then again split into X and Y portions, with the X
containing the dates associated with the target variable, the Close Price,
that is stored in Y. The model is then initialised with the aforementioned
hyperparameters and, for each index fund, fit to the train data; then the
forecasts for the length of the test period are generated. After that, these
can be evaluated using RMSE and MAPE.
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5.1 Model Forecasts

ARIMA (AutoRegressive Integrated Moving Average) The forecasts
that the ARIMA models produced were not accurate, with most remaining
at a very similar price from the final value in the training set for the time
period of the test set. This indicates that ARIMA may not be suitable for this
time period and time series data. Table 5.1 shows the evaluation metrics
for the ARIMA model. Figure 5.1 shows plots of the training data, testing
data, and the forecasts produced by ARIMA.

Figure 5.1: ARIMA Forecasts
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Table 5.1: ARIMA model average error metrics
Model Average

MAE
Average MSE Average

RMSE
Average
MAPE (%)

ARIMA 570.94 749636.27 555.50 5.23

VARMA (Vector AutoRegressive Moving Average) The forecasts that
the VARMA model produced were inaccurate, and unexpectedly performed
worse than ARIMA. The forecasts showed a smoothed gradient, which
could be attributed to the inclusion of Gold data in this model as an eco-
nomic indicator, but to determine if this is true would require further investig-
ation. VARMA may not be suitable for this time period and time series data.
Table 5.2 shows the evaluation metrics for the VARMA model. Figure 5.2
shows plots of the training data, testing data, and the forecasts produced
by VARMA.

Figure 5.2: VARMA Forecasts

LSTM (Long Short-Term Memory) For some of the indices LSTM proved
effective at forecasting the pattern the close price took, however for others
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Table 5.2: VARMA model average error metrics
Model Average

MAE
Average MSE Average

RMSE
Average
MAPE (%)

VARMA 634.45 1072572.06 777.36 NaN

it exhibited gross inaccuracy - this can be observed in Figure 5.3. The
average evaluation metrics for these predictions are shown in Table 5.3.

Figure 5.3: LSTM Forecasts

Table 5.3: LSTM model average error metrics
Model Average

MAE
Average MSE Average

RMSE
Average
MAPE (%)

LSTM 4916.59 54376342.08 4905.77 42.19
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Random Forest Random Forest proved very effective at analysing the
patterns the Close Price data would take. The predictions Random Forest
made were quite accurate and performed the best of the four models. The
evaluation metrics for this model are shown in Table 5.4, along with the
plotted forecasts in Figure 5.4.

Figure 5.4: Random Forest Forecasts

Table 5.4: Random Forest model average error metrics
Model Average

MAE
Average MSE Average

RMSE
Average
MAPE (%)

Random Forest 222.65 145100.34 195.56 2.14

5.2 Model Comparison

After comparing the effectiveness of ARIMA, VARMA, LSTM, and Random
Forest at forecasting the market close price of the chosen indices, the
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average of the collected error metrics can be observed in Table 5.5. These
values given indicate that overall, Random Forest is most proficient at
forecasting the price of the index funds. While the LSTM model made some
accurate predictions, LSTM experienced shortfalls on NASDAQ Composite
and FTSE 250 which cause it to, on average, perform worse than the
Random Forest model (the individual accuracy’s can be seen in Table A.1).
ARIMA and VARMA can be seen to perform with similar accuracy to each
other, indicating that there is not huge benefit to increasing Computational
Cost by including additional data. See below in Table 5.5 the Average
RMSE, Average MSE, Average MAE, Average MAPE, for each model.
With the accuracy that Modern Techniques produce, the advancement
and improvement in mathematics, and modelling since the origination of
Traditional Methods like ARIMA, can be observed.

Table 5.5: All average error metrics
Model Average

MAE
Average MSE Average

RMSE
Average
MAPE (%)

ARIMA 570.94 749636.27 555.50 5.23
VARMA 634.45 1072572.06 777.36 NaN
LSTM 4916.59 54376342.08 4905.77 42.19
Random Forest 222.65 145100.34 195.56 2.14

Comparison of the error can be achieved by performing ANOVA (ANalysis
Of VAriance) on the RMSE values for each model. Table 5.6 shows that
the p-value is above the significance level 0.05, which means that there
is not sufficient evidence to reject the null hypothesis and conclude that
there are significant differences between the RMSE of each model. This
means that, in terms of RMSE there is not substantial differences between
the performance of the models. The f_oneway [67] function was used from
the scipy library to perform ANOVA.

Table 5.6: F-Statistic and P-Value, for RMSE of all model forecasts
F-Statistic p-value

2.5484950694296344 0.09232764598308445

The actual testing data was compared against the forecasts from ARIMA,
VARMA, LSTM and Random Forest using ANOVA with a significance level
of 0.05 was maintained - if the ANOVA tests produce a p-value higher than
the significance level then the null hypothesis is rejected and a conclusion
is drawn that there is significant variation between the forecasting models.

In table 5.7, all the index funds show extremely small (or zero) p-values;
this indicates strong evidence against the null hypothesis and that there
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Table 5.7: F-Statistics and P-Values, for forecasts on each index fund
Index F-Statistics p-values

Dow Jones Industrial Average 186.28 4.32 × 10−89

FTSE 250 24243.21 0.0
S&P 500 239.11 1.63 × 10−103

NASDAQ 106683.30 0.0
Russell 2000 49.57 1.03 × 10−33

are differences between at least one pair of forecasts in each case of the
forecasts produced. Some forecasts of the selected index funds exhibit
a very large F-statistic (i.e. NASDAQ), indicating a large performance
difference among the forecasting models for these funds.

After establishing that at least one pair of results show significant dif-
ferences, post hoc Tukey’s tests, using the statsmodels library’s pair-
wise_tukeyhsd [68], are performed on all the forecasts of each index,
to produce a multiple comparison of means. These found that when fore-
casting the Dow Jones Industrial Average, all models significantly differ
from each other - except for LSTM and Random Forest. The tests showed
that the produced LSTM and VARMA predictions resembled each other,
when forecasting the NASDAQ Composite fund. For the S&P 500, it can be
found there is no significant difference between LSTM and RF, or between
RF and VARMA; although for the S&P 500, ARIMA, LSTM, and VARMA
significantly differ from each other. Similarities were found for the predic-
tions of FTSE 250 from RF and VARMA, with all other models showing
significant differences. The opposite was true when forecasting the Rus-
sell 2000 Index, with RF and VARMA differing significantly, but no further
difference between ARIMA, LSTM, and VARMA. Appendix A.4 has more
details about Tukey’s tests.

5.3 Discussion

The difference between modern and traditional methods of financial fore-
casting is made evident by their approaches to capturing market dynamics.
The selected modern techniques (LSTM and Random Forest) quite accur-
ately trace the fluctuations in the market close data, whereas traditional
methods (ARIMA and VARMA) tend to produce a smoother prediction which
obscures the market movements - as shown in Figure 5.1 and Figure 5.2.
This disparity may be attributed to, the shared characteristic of ARIMA and
VARMA, Moving Average components [69], which are designed to minimise
short-term fluctuations- but further investigation is required to determine if
this is true.
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In contrast, LSTMs and Random Forests ability to more accurately capture
market behaviour is made clear in their forecasts, seen in Figure 5.3
and Figure 5.4, which exhibit closer predictions. Even though these
modern models are more computationally complex than their traditional
counterparts, the enhanced predictive power and the ability to assign
feature importance justifies modern methods being adopted to forecast
financial data. Random Forest excels at identifying and prioritising features
based on their assessed importance, enabling a deeper understanding of
the underlying drivers of market behaviour [70]. Similarly, LSTM models,
after some manipulation, can reveal the assessed importance that each
variable within a model holds, further adding to the forecasting process.

Amongst the traditional methods, VARMA showed notable, unexpected,
performance over LSTM; this could be attributed to the inclusion of gold
prices 5.2. The model would have been able to use the price of gold as an
economic indicator, reflecting market sentiment and global economic stabil-
ity, which may provide it with an advantage over ARIMA when forecasting -
due to its multivariate capabilities.

ANOVA tests on the predicted values highlight the significant difference
Random Forest possessed over other models5.7. However, when using
ANOVA on the RMSE of the forecasts it found the errors produced by
each model were not significantly dissimilar5.6. This can suggests that the
individual shortcomings of the models were balanced out, after averaging
the error across all of the forecasted values.

Despite their computational efficiency, traditional methods like ARIMA and
VARMA face limitations, due to their requirement for stationary data. Dif-
ferencing the data to achieve stationarity can pose the risk of removing
important features, which may then compromise the forecasting accuracy
of these methods. Hybrid approaches combining multiple models offer
promise when addressing the limitations of individual models, by leveraging
the strengths of the sole approaches to enhance predictive performance
[51].

The overall findings highlight the clear advantages of modern approaches
when capturing the complexities of market behaviour, and that the excep-
tional benefits of modern methods extend beyond strictly their predictive
accuracy. Despite the increased computational complexity associated with
modern methods, modern techniques ability to provide further insight into
the market behaviour, through better tracing trends and identifying feature
importance [70], proves invaluable. With the ever increasing complexity
of financial markets, the adoption of modern forecasting techniques will
become imperative for those seeking to navigate particular uncertainty and
benefit from emerging, previously hidden, opportunities.

29



6 Conclusion

After multiple forecasting models were applied to selected index fund data,
the ARIMA, VARMA, LSTM, and Random Forest models were evaulated
using MAPE and RMSE, and then compared using ANOVA - to ascertain
any significant differences between the predictions they produced. Upon
finding that there were significant differences, the forecasts were also sub-
jected to Tukey’s Tests to identify which models had differences. These
tests revealed that the Random Forest model demonstrated better perform-
ance when compared to other models; this would suggest that a modern
approach, Random Forest, is more preferential over a traditional method.
Further ANOVA investigation comparing the RMSE of the models found that
they performed comparably, this discrepancy may be due to the balancing
effect of combining individual errors to calculate RMSE. The advantage of
Random Forest is shown by its ability to imitate market behaviour.

For future studies, enhancements could be made to improve prediction
accuracy, including:

• Hybrid Methods - Combining models, such as ARIMA with LSTM,
could yield more accurate predictions. Hypbrid approaches can
integrate complementary features to enhance performance.

• Consideration of external factors - Introducing external factors, like
news sentiment or economic indicators, could increase the predictive
power by providing further insights into market activity.

• Additional Data - More diverse/relevant data can enhance the accur-
acy of the forecasting models; this can include, but is not limited to,
macroeconomic indicators or industry specific data.

• Different error metrics/evaluation methods - Exploring other evalu-
ation metrics could potentially provide a more comprehensive under-
standing of the models performance and behaviours.

• Market strategies - Investigate market strategies for buying and selling
to maximise profit, like "Buy and Hold", or "Pair Trading".

• Feature Importance - Investigating the feature importance in models
can lead to a better understanding of the models performance.
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A Appendix

A.1 Data collection

Figure A.1: Description of collected Close Data

A.2 LSTM Hyperparameters

Input Size: This hyperparameter is used to define how many input di-
mensions the data, i.e. how many columns the data has. In the case of this
study, the number of columns are used - allowing the model to train on all
the selected index fund data at once. This is used to determine how many
input neurons the LSTM model uses, directly influencing the architecture of
the model.

Output Size: For output size the aim is to be able to make predictions
for each individual index, so it should be ensured that the model outputs
the same number of predictions as the number of inputs given to it. When
performing multivariable forecasting the Output Size and Input Size often
match. This hyperparameter directly affects the architecture of the model,
as it states that the model requires an output neuron for each index.
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Hidden Size: The hidden size hyperparameter is used to represent how
the data is represented internally, within the LSTM model. When choosing
a hidden size it is important to consider the computational cost of the
model, as when hidden size is increased so is the cost. However, having a
larger hidden size allows for the model to be able to identify more complex
patterns within the data. This study uses a hidden size of 64, as it is not
overly large but is still sufficient to capture the complex patterns in the data.

Number of Layers: This hyperparameter is labelled very accurately, as it
just defines the number of LSTM layers which are applied on top of each
other within the model. A higher number of layers causes the model to
become a deeper neural network - increasing the models capacity to learn
but also causes it to become more computationally expensive. The choice
of two LSTM layers allows the model to learn complex representations
whilst also staying not excessively computationally expensive, maintaining
a balance in complexity and performance. A choice of a lower number of
layers also reduces the risk of overfitting, however this is already low due
to the use of a large dataset.

Sequence Length: This hyperparameter is used to manipulate the data
for effective model training, as previously described in 4.3.1. It represents
the number of historical observations which are considered with each
prediction. Longer/larger sequences allow the model to identify more
long term dependencies within the data, however this again comes with
the tradeoff of being more computationally expensive. This study uses
a sequence length of 10, meaning it will consider 10 past time steps to
predict the next time step, capturing a balance of short and long term
dependencies.

Epochs: Epochs specify the number of times that the dataset is passed
through the LSTM model whilst training it. With each epoch the model
updates its parameters to improve over time, meaning that a higher number
of epochs gives the model more opportunities to learn - however also
increases the risk of overfitting. There is also the possibility of the model
reaching an optimal solution early in training, and then there not being much
reduction in loss from more training. 100 epochs is a common choice in
training LSTM models and permits the model to undergo enough iterations
in training to accurately converge.

Batch Size: In training the model does not analyse each data point indi-
vidually, but instead selects batches of the given Batch Size and processes
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multiple data points simultaneously. This is useful in this study’s case as
large datasets are used and it speeds up the training of the model. It also
smooths the optimisation of the model, as each batch provides a different
perspective on the data which encourages the model to learn more general
patterns. The LSTM model used for this study uses a batch size of 64 data
points.

Learning Rate: This hyperparameter defines the step size which the
model parameters are updated whilst training, using the selected optimisa-
tion algorithm - ADAM. It is important to choose an appropriate learning
rate, in order for the model to converge towards an optimal solution whilst
both avoiding overshooting and not settling for a less optimal solution by
getting stuck in a local minima. The learning rate is defined at 0.001 in
this study, providing ADAM with a moderate step size and allowing efficient
convergence.

Optimiser: For the optimiser of the models parameters, this study uses
ADAM (ADAptive Moment estimation) to minimise the loss of the model.
ADAM is an optimiser that is used to update the network weights dur-
ing training to minimise loss. It combines AdaGrad and RMSProp and
this causes faster convergence and less tuning of hyperparameters. It
computes adaptive learning rates for parameters by keeping track of the
exponentially decaying average of past gradients and their squares. Ad-
aGrad (ADAptive Gradient algorithm) is an optimiser used to adjust the
learning rate in training based on parameters. It scales the learning rates
inversely proportional to the square roots of sum of the squared gradients
for each param. The idea is that it performs larger updates for infrequent
parameters and smaller updates for those which are more common - this
makes it useful for sparse data (where some parameters may be updated
less than others). Faster convergence is caused by a reduced learning rate
for frequent parameters and increased for less frequent ones. A drawback
of AdaGrad is that if the learning rate becomes too small, which happens
over time, then it can cause slow convergence. RMSProp (Root Mean
Squared Propagation) is an optimiser that addresses the learning rate
issue from AdaGrad - by using the aforementioned exponentially decaying
average of past gradients and their squares - in Adam. This lets it focus on
more recent gradients instead of all past gradients, lessening the issue of
diminishing learning rates. However, like AdaGrad, RMSProp still has the
same issue of having a fixed learning rate schedule - which isn’t ideal for
optimisation.
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Criterion: MSE loss is used as the loss function when training and testing
the LSTM model, aiming to minimise the MSE. Mean Squared Error is
commonly used in financial time series forecasting.

A.3 Model Error Metrics

In Table A.1 are the individual error metrics for each model, on each index.
The Index column contains the symbol for each index, Dow Jones Industrial
Average (DJI), FTSE 250 (FTMC), S&P 500 (GSPC), NASDAQ (IXIC), and
Russell 2000 (RUT).

Model Index MAE MSE RMSE MAPE(%)
ARIMA DJI 1228.76 2180764.22 1205.09 4.53

FTMC 701.38 927083.80 661.55 3.45
GSPC 212.12 59205.02 211.49 7.05
IXIC 664.11 577532.37 661.61 8.07
RUT 48.34 3595.93 37.76 3.05

VARMA DJI 1228.76 2180764.22 1205.09 4.53
FTMC 701.38 927083.80 661.55 3.45
GSPC 212.12 59205.02 211.49 7.05
IXIC 664.11 577532.37 661.61 8.07
RUT 48.34 3595.93 37.76 3.05

LSTM DJI 1196.16 2064356.45 1159.36 4.41
FTMC 10751.24 115741098.39 10751.24 134.22
GSPC 198.87 53345.51 197.02 6.61
IXIC 12390.32 154019623.46 12390.32 62.78
RUT 46.34 3286.58 30.91 2.93

Random Forest DJI 474.65 433415.61 415.33 1.75
FTMC 154.56 49943.26 97.86 0.78
GSPC 74.95 11359.28 69.10 2.46
IXIC 394.49 230425.12 391.30 4.78
RUT 14.60 358.46 4.21 0.94

Table A.1: All average error metrics

A.4 Tukey’s Tests

Table A.2 presents the results of the post hoc Tukey’s Tests performed
across the models forecasts on selected index funds. The column headings
represent a different property found through the testing. The "Index" column
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contains the ticker for each index which was being forecast. "Model 1"
and "Model 2" describe the pair of models which are being examined, and
"Mean Difference" displays the mean difference between the two groups
being compared. Adj-P contains the adjusted p-values, taking into account
multiple comparisons to the original p-value for the Family-Wise Error
Rate (FWER); the FWER for each test was set at a significance level
of 0.05. "Lower" and "Upper" represent the lower and upper bounds of
the confidence interval for the produced "Mean Difference". "Reject H0"
contains a Boolean value which indicates whether the null hypothesis,
which indicates a significant difference between "Model 1" and "Model 2",
can be rejected; "True" suggests a rejection, whereas "False" means there
is no statistically significant difference. The Index column contains the
symbol for each index, Dow Jones Industrial Average (DJI), FTSE 250
(FTMC), S&P 500 (GSPC), NASDAQ (IXIC), and Russell 2000 (RUT).
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Index Model 1 Model 2 Mean Difference Adj-P Lower Upper Reject H0
DJI ARIMA LSTM -926.109 0.0 -1023.9549 -828.2632 True

ARIMA RF -707.7829 0.0 -805.6288 -609.937 True
ARIMA VARMA -744.4566 0.0 -842.3025 -646.6108 True
LSTM RF 218.3261 0.0 120.4803 316.172 True
LSTM VARMA 181.6524 0.0 83.8065 279.4983 True

RF VARMA -36.6737 0.7677 -134.5196 61.1721 False
IXIC ARIMA LSTM -407.1179 0.0 -467.7932 -346.4425 True

ARIMA RF 11015.3632 0.0 10954.6879 11076.0386 True
ARIMA VARMA -427.0295 0.0 -487.7049 -366.3542 True
LSTM RF 11422.4811 0.0 11361.8058 11483.1565 True
LSTM VARMA -19.9117 0.8316 -80.587 40.7637 False

RF VARMA -11442.3928 0.0 -11503.0681 -11381.7174 True
GSPC ARIMA LSTM -131.2218 0.0 -147.9635 -115.1078 True

ARIMA RF -112.3213 0.0 -128.4352 -96.2073 True
ARIMA VARMA -128.4889 0.0 -144.6029 -112.3749 True
LSTM RF 18.9005 0.0141 2.7865 35.0145 True
LSTM VARMA 2.7329 0.9718 -13.3811 18.8469 False

RF VARMA -16.1676 0.0489 -32.2816 -0.0536 True
FTMC ARIMA LSTM -53.4536 0.3168 -133.8856 26.9785 False

ARIMA RF -12089.0643 0.0 -12169.4964 -12008.6323 True
ARIMA VARMA -375.4439 0.0 -455.8759 -295.0119 True
LSTM RF -12035.6108 0.0 -12116.0428 -11955.1787 True
LSTM VARMA -321.9903 0.0 -402.4224 -241.5583 True

RF VARMA 11713.6204 0.0 11633.1884 11794.0525 True
RUT ARIMA LSTM 0.8507 0.8686 -8.3125 4.3511 False

ARIMA RF -43.9834 0.0 -32.888 -20.2244 True
ARIMA VARMA -39.2443 0.0 -45.5761 -32.9125 True
LSTM RF -24.5755 0.0 -30.9073 -18.2437 True
LSTM VARMA -37.2636 0.0 -43.5954 -30.9318 True

RF VARMA -12.6881 0.0 -19.0199 -6.3563 True

Table A.2: Tukey’s Test results
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